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Abstract. The estimation of quality for real-time services over telecom-
munication networks requires realistic models for impairments and fail-
ures during transmission. We focus on the classical Gilbert-Elliott model
whose second order statistics is derived over arbitrary time scales and
used to fit packet loss processes of traffic traces measured in the IP back-
bone of Deutsche Telekom. The results show that simple Markov models
are appropriate to capture the observed loss pattern.

1 Introduction

The transfer of real-time data over the Internet and channels in heterogeneous
packet networks is subject to errors of various types. A packet can be corrupted—
and therefore is unusable for a voice or video decoder—due to unrecoverable bit
failures. On wireless and mobile links temporary and long lasting reductions
in the available capacity frequently occur and even in fixed and wired network
sectors packets may be dropped at routers and switches in phases of overload.

Most of the Internet traffic is controlled by the TCP protocol, which provides
mechanisms for retransmission of lost or corrupted data and for controlling the
load on congested links involving FIFO queues with a Tail-Drop or Random
Early Detection (RED) [1] policy. On the other hand, the portion of uncontrolled
traffic via the UDP transport protocol has been increased to a level of 5 - 10% in
recent time [2], partly since real-time services over IP including voice, video on
demand and online gaming are gaining in popularity. The upcoming deployment
of IP-TV over VDSL broadband access platforms by Deutsche Telekom and other
Internet service providers will strengthen this trend.

In this work we focus on packet loss on Internet links with most traffic con-
trolled by TCP superposed with a considerable contribution of real-time traffic
without flow control. Under sufficiently high link load, this causes spontaneous
overload peaks causing packet loss. Available traffic traces [2] show, that UDP
traffic has a higher variability in the relevant time scales than the total traffic,
which at the present stage is dominated by peer-to-peer data exchange.

The impact of transmission errors on the user perception of real-time services
can be investigated starting from measurement traces of traffic and loss pattern.
In addition, a stochastic model can be set up and used to generate a considered



error process with similar characteristics as observed in the measurement. The
Gilbert-Elliott model [3, 4] is one of the most popular examples, which has been
preferably applied to bit error processes in transmission channels. Model driven
studies usually include a set of parameters with a clear interpretation, which
have to be adapted to a considered scenario. Their main advantage lies in an
abstraction level, which makes them much more flexible than a fixed measure-
ment trace. Thus the impact of different error rates, burstiness of error pattern
etc. can be studied in a common modeling framework.

Both, using real data loss traces—e.g. captured in backbone links—and model
generated loss traces has its benefits. The main disadvantage of using model
generated loss traces is that statistical properties may not fit and thus traces
can be biased by model limitations. The present paper will propose a parameter
estimation technique for a 2-state Markov model to adapt the model to the
second order statistics observed in a given traffic trace on multiple time scales
by moment matching.

In Section 2 we characterise the packet loss pattern observed in traffic traces
based on the second order statistics, i.e. the coefficient of variation, in multiple
time scales. We consider simple Markov processes to be fitted to the observed
second order statistics.

Section 3 summarises classical fitting schemes for the Gilbert-Elliott model
[3, 4]. They do not cover the second order statistics, which we found to be non-
trivial along the derivation shown in Section 4. In Section 5, a comparison of the
model with adapted parameters to the packet loss pattern derived from traffic
traces shows that simple Markov processes achieve a fairly close fit to the mean
and variances over multiple time scales. Section 6 considers related work.

2 Packet Loss Process in Data Transfer over Multiple
Time Scales

We consider a typical scenario found in backbone links of controlled TCP packet
flows being superposed with real-time traffic over the UDP protocol, which does
not provide error recovery and flow control mechanisms. We refer to measure-
ment traces of traffic taken from a 2.5 Gb/s interface of a broadband access
router of Deutsche Telekom’s IP platform, which connects residential ADSL ac-
cess lines to the backbone. Based on the time stamp and the size of each packet,
the variability of the traffic rates can be observed in time scale ranging from the
accuracy level of the time stamps well below 1 ms up to the 30 minutes length of
the traces. As the packet loss process shows characteristic behaviour on multiple
time scales, techniques used for describing the variability in traffic rates will be
also used for describing the packet loss process in this paper.

Let ∆ be a time frame in this range. Then corresponding traffic rates Rk(∆)
are determined for successive intervals of length ∆ by dividing the sum of the
size of all packets arriving in a time interval by its length. From the sequence
Rk(∆) the mean rate µR and the variance σ2

R(∆) are computed. In this way, the
second order statistics is given considering σ2

R(∆) over a relevant range of ∆.
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Fig. 1. Measurement topology: TCP backbone traffic is feed from a trace file along
with UDP traffic into a router. The traffic is directed over an bottlenecked link to a
destination. The loss rate can be arbitrarily chosen by adjusting the capacity of the
outgoing, bottlenecked link.

This statistics is a standard description method for traffic and is equivalent to the
autocorrelation function over the considered time scales. Long range dependent
traffic patterns are classified as exact or second order self-similar depending on
the autocorrelation of the process [5, 6].

Table 1 shows the second order statistics for ∆ = 1 ms, 10 ms, 100 ms, 1 s
and 10 s measured for the UDP and the total traffic. The coefficients of variation
cv(∆) = σ(∆)/µ are observed to be about twice as high for UDP as for the total
traffic.

Mean Rate cv(1 ms) cv(10 ms) cv(100 ms) cv(1 s) cv(10 s)

UDP traffic µ = 50.8 Mb/s 0.3209 0.1220 0.0531 0.0433 0.0394
Total traffic µ = 753.9 Mb/s 0.1689 0.0635 0.0322 0.0259 0.0216

Table 1. Second order statistics for ∆ = 1 ms, 10 ms, 100 ms, 1 s and 10 s for the
UDP and the total traffic

In this paper, we adhere to the second order statistics for describing the
packet loss process. The traffic traces are at a load level of about 30% and
originally do not exhibit packet losses in the considered time scales. However, at
higher load, i.e. for reduced capacity < 2.5 Gb/s, overload phases occur above
some medium load level and we can easily compute the resulting packet loss
process corresponding to the trace at any sufficiently high load level. In general,
the loss pattern is evaluated for a predefined capacity C (versus load) including a
buffer of limited size B, assuming that an arriving packet is lost by tail drop each
time when it does not fit into the remaining buffer. The loss pattern obtained in
this way are adequate for uncontrolled UDP traffic, but do not regard the TCP
retransmission and source rate adaptation. However, the TCP control does not
respond on the 1 ms, but on essentially larger time scales. We assume that TCP
will establish a stabilised non-excessive load level without much data loss and
will focus on the UDP traffic portion with regard to TCP background traffic.



We obtain the packet loss process from the traces at a predefined load level
and calculate its second order statistics. Since the loss rate is monotonously
increasing with the load, we can adjust the load in order to approach a considered
packet loss rate.

Next, we study simple Markov models again with focus on their second order
statistics. The aim is to provide a generator for packet loss pattern to be used
in the estimation of the degradation in the Quality of Experience (QoE) for
Internet services.

3 Gilbert-Elliott: The Classical 2-State Markov Model
for Error Processes

We consider the 2-state Markov approach as introduced by Gilbert [3] and Elliott
[4], which is widely used for describing error patterns in transmission channels
[7–15] and for analysing the efficiency of coding for error detection and correction
[16]. We follow the usual notation of a good (G) and bad (B) state. Each of them
may generate errors as independent events at a state dependent error rate 1− k
in the good and 1−h in the bad state, respectively. The model is shown in Figure
2. For applications in data loss processes, we interpret an event as the arrival of
a packet and an error as a packet loss. The transition matrix A is given by the
two transitions

p = P (qt = B|qt−1 = G); r = P (qt = G|qt−1 = B); A =
(

1− p p
r 1− r

)
,

(1)
where qt denotes the state at time t.

G B

p

1−p

r

1−r
1−h1−k

Fig. 2. The Gilbert-Elliott model generating a 2-state Markov modulated failure pro-
cess

The stationary state probabilities πG and πB exist for 0 < p, r < 1 [16] from
which the error rate pE is obtained in steady state:

pE = (1− k)πG + (1− h)πB ; πG =
r

p + r
, πB =

p

p + r
. (2)



In 1960, Gilbert [3] proposed a model to characterise a burst-noise channel.
It adds memory to the Binary Symmetric Channel coded into two states of the
Markov chain. Gilbert considered the special case of an error-free good state
(k = 1) and suggested to estimate the model parameters from three measurable
instances of a binary error process {Et}t∈N, where Et = 1 indicates an error:

a = P (1), b = P (1|1), c =
P (111)

P (101) + P (111)
. (3)

By knowing a, b and c, the three model parameters can be computed in the
following manner

1− r =
ac− b2

2ac− b(a + c)
; h = 1− b

1− r
; p =

ar

1− h− a
. (4)

Gilbert argues that the c measurement may be avoided by choosing h = 0.5 and
using 1−r = 2b. Furthermore, he showed that the method introduced above can
lead to ridiculous parameters (p, r, h < 0, or p, r, h > 1), if the observation (the
trace) is too small. Morgera et al. [17] also conclude that the method proposed
by Gilbert is more appropriate for longer traces. In case of shorter observations,
better results can be obtained when considering the Gilbert model as Hidden
Markov Model trained by the Baum-Welch algorithm [18–20].

Parameters of an even simplified Gilbert model with h = 0 can also be
estimated with the method presented by Yajnik et al. [8]

p = P (1|0); r = P (0|1). (5)

A more intuitive parameter estimation technique can be found by considering
the Average Burst Error Length (ABEL) to determine r = 1/ABEL and the
average number of packet drops to determine pE . Equation (2) leads to p =
pE · r/(h − pE). Gilbert’s model was extended by Elliott [4] in 1963 including
errors in both states as in Figure 2.

Model Parameter Training Complexity Simplification

Simple Gilbert p, r simple k = 1, h ∈ {0, 0.5}
Gilbert p, r, h medium k = 1
Gilbert-Elliott p, r, h, k high /

Table 2. Comparison of simplified two-state Markov channel models

4 Variance of the Error Process over Multiple Time
Scales

The second order statistics of the 2-state Markov process can be derived via
generating functions. While it is straightforward to compute the distribution



function of errors in time frames of length N + 1 iteratively from the result
for length N , a non-iterative direct solution is less obvious already for the 2-
state Markov model [21]. To the authors knowledge, explicit expressions for the
variance of the number of errors during a time frame of fixed length, are not
given in the literature, although there is a large volume of work involving the
Gilbert-Elliott model, as partly discussed in Section 6 on related work. However,
most of this work is devoted to error detecting and correcting codes and the
residual error probabilities of coding schemes, rather than on traffic or packet
loss characterisation. Second order statistics in multiple time scales is a standard
approach in teletraffic modelling [5, 6].

Although Markov models do not exhibit self-similar properties, they have
been successfully adapted to self-similar traffic [22] and are still popular since
they often lead to simple analytical results. Following this trend, we next derive
the variance of the number of packet drops as errors in the 2-state Gilbert-Elliott
model over a range of relevant time frames.

4.1 Generating Functions

Let GN (z) (BN (z)) denote the generating function X(z) def=
∑

i P{X = i}zi

for the number of packet drops in a sequence of N packet arrivals, leaving the
Markov chain in the last step at state G (B). Iterative relationships can be set
up to compute GN+1(z) from GN (z) taking into account the state transitions
and factors (k + (1− k)z) and (h + (1− h)z) for possible drop of the (N + 1)-th
packet with state dependent probabilities 1− k and 1− h, respectively:

GN+1(z) = (1− p)(k + (1− k)z)GN (z) + r(h + (1− h)z)BN (z) (6)

BN+1(z) = p(k + (1− k)z)GN (z) + (1− r)(h + (1− h)z)BN (z) (7)

Starting in steady state conditions we initialise

G0(z) =
r

p + r
; B0(z) =

p

p + r
. (8)

The corresponding distributions GN (z), BN (z) remain defective GN (1) = r/(p+
r) and BN (1) = p/(p + r) ∀N ∈ N. We finally evaluate complete distributions
given by GN (z) + BN (z) where GN (1) + BN (1) = 1 independent of the final
state.

The k-th moment can be derived from the generating function by considering
the k-th derivative [23, 24]: E[Xk] = ∂

∂zk X(z)|z=1. The mean µX = E(X) and
the second moment E(X2) are sufficient to derive the second order statistics
involving the first and second derivative of the generating functions.

G′
N+1(z) = (1− p) · ((1− k) ·GN (z) + (k + (1− k)z) ·G′

N (z))
+r · ((1− h) ·BN (z) + (h + (1− h)z) ·B′

N (z))
(9)

G′′
N+1(z) = (1− p) · (2(1− k) ·G′

N (z) + (k + (1− k)z) ·G′′
N (z))

+r · (2(1− h) ·B′
N (z) + (h + (1− h)z) ·B′′

N (z))
(10)



B′
N+1(z) = p · ((1− k) ·GN (z) + (k + (1− k)z) ·G′

N (z))
+(1− r) · ((1− h) ·BN (z) + (h + (1− h)z) ·B′

N (z))
(11)

B′′
N+1(z) = p · (2(1− k) ·G′

N (z) + (k + (1− k)z) ·G′′
N (z))

+(1− r) · (2(1− h) ·B′
N (z) + (h + (1− h)z) ·B′′

N (z))
(12)

4.2 Mean Values

The mean values are given by µG
N = G′

N (1) and µB
N = B′

N (1), which leads to the
following expressions

µG
N+1 = (1− p) ·

(
(1− k)r
p + r

+ µG
N

)
+ r ·

(
(1− h)p

p + r
+ µB

N

)
, (13)

µB
N+1 = p ·

(
(1− k)r
p + r

+ µG
N

)
+ (1− r) ·

(
(1− h)p

p + r
+ µB

N

)
. (14)

Considering the sum of µG
N+1 and µB

N+1 leads to the expected result of N +1
times the failure rate in the steady state:

µN+1 = µG
N+1 + µB

N+1 = (N + 1)
(

(1− k)r
p + r

+
(1− h)p

p + r

)
= (N + 1)pE . (15)

To eliminate the reference to the opposite term, µB
N+1 can be rewritten as

µB
N+1 =

pr(1− k)
p + r

+ p ·
(

µG
N + µB

N︸ ︷︷ ︸
(15)

−µB
N

)
+ (1− r) ·

(
p(1− h)

p + r
+ µB

N

)

= (N + 1) ·
(

pr(1− k)
p + r

+
p2(1− h)

p + r

)
+ [1− (p + r)] ·

(
p(1− h)

p + r
+ µB

N

)
.

(16)

Next, we structure the above equation according to their dependence on N
and µB

N with abbreviations for the main terms α, βB and γB :

µB
N+1 = (N + 1) · βB + α · (µB

N + γB); α := 1− (p + r); (17)

βB :=
pr(1− k)

p + r
+

p2(1− h)
p + r

; γB :=
(1− h)p

p + r
. (18)

Computing a series of the first mean values

µB
1 = βB + αγB , µB

2 = 2βB + α(βB + γB) + α2γB , (19)



suggests the general result, which is proven by induction over N :

µB
N = −γB +

N∑
j=0

αj(γB + βBγB(N − j))

= βB
N

1− α
+

(
γB −

βB

1− α

)
α

1− α

(
1− αN

)
, for α 6= 1 (20)

The case α = 1, which means p = r = 0 implies a reducible and thus non-ergodic
Markov chain, which is not relevant for modelling purposes.

Due to the symmetry of both states G and B, GN (z) can be obtained from
BN (z) by swapping the parameters p ↔ r and h ↔ k and vice versa. Thus,
GN (p, r, h, k, z) = BN (r, p, k, h, z) and µG

N (p, r, h, k) = µN
B (r, p, k, h). Consider-

ing the sum µB
N + µG

N again leads to Equation (15).

4.3 Explicit Solution for the Variance

Using the mean values, the variance of the number of packet losses in a time
frame of size N can be derived as follows

G′′
N+1(1) + B′′

N+1(1) = 2(1− k)µG
N + 2(1− h)µB

N + G′′
N (1) + B′′

N (1)

= 2(1− k)
N∑

i=1

µG
i + 2(1− h)

N∑
i=1

µB
i . (21)

The sum of the mean values yields
N∑

i=1

µs
i =

N∑
i=1

βs
i

1− α
+

(
γs −

βs

1− α

)
α

1− α

(
1− αi

)
, s ∈ {G, B}

= −βs
N(N + 1)
2(1− α)

+
(

γs −
βs

1− α

)
α

1− α

(
N − α(1− αN )

1− α

)
.

Based on the relationship G′′
N (1) + B′′

N (1) = µ2
N + σ2

N − µN , the previous
solution for G′′

N+1(1)+B′′
N+1(1) yields the standard deviation σN = σB

N +σG
N of

the number of lost packets as well as the coefficient of variation cv(N) = σN/µN .
We finally arrive at the following result for cv(N) expressing the second order
statistics of the number of errors or packet losses in a sequence of length N
generated by the Gilbert-Elliott model:

cv(N) =

√
G′′

N (1) + B′′
N (1)− µ2

N + µN

µN
; ω := (1− h)p + (1− k)r

=
1√
N

√
hp + kr

ω
+

2pr(1− p− r)(h− k)2

ω2(p + r)

(
1− 1− (1− p− r)N

N(p + r)

)
.

(22)

The solution is comprehensible enough to interpret the influence of the model
parameters. Note that the evaluation of the term 1 − (1 − p − r)N may cause
numerical instability for small p, r, which can be improved by implementing the
equivalent form 1− (1− p− r)N = 1− eln(1−p−r)·N .



4.4 Simple Cases

In case of h = k, both states are indistinguishable and the Markov chain collapses
to a single state leading to the simplified result

cv(N) =

√
h

(1− h)N
. (23)

This corresponds to a binomial distribution GN (z) + BN (z) = [h + (1− h)z]N

of independent random packet losses generated by a memoryless process.
If p + r = 1, the Markov chain again generates a memoryless process, since

the transition probabilities, e.g. to state B, are the same starting from B or G:

P (qt = B|qt−1 = G) = p; P (qt = B|qt−1 = B) = 1− r = p. (24)

Again, the coefficient of variation is simplified:

cv(N) =

√
1
N

hp + kr

(1− h)p + (1− k)r
. (25)

The precondition p + r � 1/N also leads to a simpler representation of the
form, since the last fraction in Equation (22) approaches 0 in that case:

cv(N) =

√
hp + kr

Nω
+

(N − 1)pr(h− k)2

Nω2
; ω := (1− h)p + (1− k)r.

4.5 Parameter Impact on the Second Order Statistics of the
Gilbert-Elliott Model
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Fig. 3. Parameter impact on the second order statistics of the Gilbert-Elliott model

Based on the analytical result in Equation (22) for cv(N), the main properties
of the second order statistics of the Gilbert-Elliott model become visible.



1. The starting point of the curves for cv(N) is given by cv(1) =
√

(hp + kr)/ω =√
1/pE − 1 and thus only depends on the packet loss rate.

2. Figure 3(a) shows curves of cv(N) for h = 0 and k = 1 such that the
bad state generates bursts of subsequent packet losses and pE = πB =
r/(p + r). In all examples of Figure 3(a) we keep the ratio r/p = 1/100
constant such that pE = 1/101 ⇒ cv(1) = 10. The curves are characterised
by a horizontal part, which holds the variance on the initial cv(1) value
followed by a declining part. The length of the part at constant level depends
on p + r, i.e. on the intensity of transitions between the states, which is
different but fixed for each curve in Figure 3(a). The sojourn times of the
good and bad state are geometrically distributed with mean (1 − p)/p and
(1− r)/r, respectively. For limp+r → 0 the mean holding times of the states
are extended on longer times scales.

3. Then the correlation in the modelling process persists over about the same
time scale and the transition point from the constant to the declining part
of the cv(N) curve is shifted in the range between 1/p and 1/r.
The decreasing part soon approaches the same slope as is valid for a mem-
oryless process with independent random losses at a given rate, such that
cv(kN)/cv(N) →

√
k.

Figure 3(b) shows results, where p + r is again stepwise reduced by a factor
10 as in 3(a), but this time with h = 0.99, which means a low loss probability of
1% in the bad state and by setting r/p = 1/10 the total loss probability is kept
at pE = 1/1100 ⇒ cv(1) =

√
1099. Again the coefficient of variation stays at

a constant level over multiple time scales for small p + r, but essentially below
the initial cv(1) value.

5 Evaluation

The evaluation of the trained 2-state Markov models using the coefficient of
variation cv(N) = σN/µN is shown for two backbone traces with different packet
loss rates in Figure 4 and 5. The Poisson process provides a linear lower bound
for cv(N) without any autocorrelation. The parameters of the simple Gilbert
(h = 0, k = 1) and the Gilbert model have been estimated from the given traces
using the traditional methods proposed by Yajnik et al. [8] and Gilbert [3] as
introduced in Section 3.

Moreover, the simplified Gilbert, the Gilbert and the Gilbert-Elliott model
have been trained based on the second order statistics over multiple timescales
N ∈ [1, 105], as shown in Figure 4 and 5. The model parameters were esti-
mated by fitting the coefficient of variation curve to the one obtained from the
corresponding trace using the Levenberg-Marquardt algorithm for numeric op-
timisation of non-linear functions. Initial trial values for the parameters were
estimated from the study of the impact of different model parameters discussed
in Section 4.5.
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Fig. 4. Evaluation of the trained 2-state Markov models using the coefficient of varia-
tion cv = σ/µ for a backbone trace with a mean packet loss rate of 0.7%.

Trace Trained Model p r h k pE

0.7 % Simple Gilbert 0.000401648 0.0414789 0 1 0.95%
Gilbert 0.000196854 0.0109547 0.563513 1 0.77%
Elliott 0.000132253 0.00811837 0.559691 0.999372 0.71%

0.1 % Simple Gilbert 2.9365·10−5 0.0229754 0 1 0.13%
Gilbert 1.3343·10−5 0.00601795 0.555044 1 0.098%
Elliott 1.33308·10−5 0.00601795 0.554949 0.999999 0.098%

Table 3. Estimated model parameters for both traces using second order statistics.
The mean packet loss rate of the first trace is 0.7% and 0.1% in case of the second.

The distance between different model curves as shown in Figure 4 and 5 and
the trace curve is measured by the the Mean Square Error (MSE)

MSE(model) = 10−5
105∑

N=1

(cmodel
v (N)− cmodel

v (N))2, (26)

where a smaller MSE indicates a better fit. Table 4 compares the considered
models.

The model parameters resulting from the adaption to the coefficient of varia-
tion found in the trace are given in Table 3. This trend confirms the assignment
of h = 0.5 by Gilbert [3]. The packet loss rate pE of the simple Gilbert model
with h = 0 essentially deviates from the trace.
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Fig. 5. Evaluation of the trained 2-state Markov models using the coefficient of varia-
tion cv = σ/µ for a backbone trace with a mean packet loss rate of 0.1%.

Trace / Model Simple Gilbert (eq. 5) Gilbert (eq. 3-4) Simple Gilbert Gilbert Elliott

0.7% 4.02 1.3 0.98 0.2 0.18
0.1% 43.42 19.04 7.96 1.09 1.09

Table 4. Mean Square Error (MSE) distance between different trained models and the
two traces. The Markov models were trained using classical techniques (eq. 5 and 3-4)
and the second order statistics as described in Section 4.

However, when we look at the distribution of the length of packet losses in a
series, then the classical fitting procedures seem to be in favour, as experienced
from first evaluations. This is not unexpected, since they are closer related to
error burst lengths whereas the second order statistics can include long range
correlation. The extraction of the most relevant information in measurement
traces to be used for the fitting of model parameters with regard to the Quality
of Experience aspects (QoE) is still for further study. The relevance of bursts
surely increases with the observed mean failure burst length in a considered
traffic flow.

6 Related Work

Cuperman [21] derives the generating function Hm(z) for m errors in a binary
series of arbitrary length, where P (m,n) denotes the probability of m errors in



a series of length n.

Hm(z) =
∞∑

n=m

P (m,n)zn =
p

p + r
z

(
1− g(z)
1− z

)2

[g(z)]m−1 (27)

g(z) =
∞∑

k=1

P (0k−11/1)zk; 1 ≤ m ≤ n

However, the result is not directly transferable to obtain the second order statis-
tics, since it is summing up over an infinite range of the length n rather than
focusing on a fixed length n.

Girod et al. [7] found a simple Gilbert model (k = 1, h = 0) useful to describe
the characteristics of packet losses in Internet connections and to derive an error
model for Internet video transmissions on top, as lost packets will affect the
perceived quality of the video transmission. Huitika et al. [25] extended the
simple Gilbert model by adapting it to the datagram loss process in the scope
of real-time video transmissions, by adding a third state to describe out-of-order
packets. Zhang et al. [9] use a simple Gilbert model to describe a cell discard
model for MPEG video transmissions in ATM networks, where the cell losses
are caused by excessive load at ATM multiplexers.

McDougall et al. [26] proposed a 4-state Markov model with a hypergeomet-
rical distribution of the sojourn time in the good and bad state as approximation
of an IEEE 802.11 channel. Poikonen et al. [14] [15] compared finite state Markov
models, such as the McDougall model, in order to simulate the packet error be-
haviour of a DVB-H system. The McDougall model and the Markov-based Trace
Analysis (MTA) [27] outperformed the Gilbert model, as the latter was unable to
reproduce the variance in burst error lengths. Yajnik et al. [8] point out that the
simple Gilbert model is suitable if the error gap length of the traces is geomet-
rically distributed, but can be outperformed by considering high-order Markov
chains.

Tang et al. [12] used a simple Gilbert model to create a multicast loss model
in IEEE 802.11 channels. Hartwell et al. [13] compared five finite-state Markov
models to create a frame loss model for IEEE 802.11 indoor networks and found
out that high order models trained by the Baum-Welch algorithm outperformed
the Gilbert model. McDougall et al. [11] were able to reproduce the packet
error rate and the average burst error length of an IEEE 802.11 channel using
the simple Gilbert model, but failed to replicate the variance in error burst
lengths and therefore suggested to use Gamma based state durations, as in [28].
McDougall et al. [11] also suggest that the restriction of geometrically distributed
state lengths due to the Gilbert-Elliott model can be overcome and, for example,
the Gamma distribution can be used.

7 Conclusion

This work provides a method to adapt the parameter set of a 2-state Markovian
error pattern generator to match the second order statistics over multiple time



scales. The generating functions approach provides recursive relationships for
the distribution of the number of lost packets, which finally leads to an explicit
and clearly structured solution for the second order statistics. Special cases of
the model as well as the impact of its parameters are discussed. Naturally, fitting
procedures based on second order statistics yield a closer match in multiple time
scales than classical adaptation schemes, which on the other hand are better in
modelling error bursts.

Therefore it depends on the purpose of the model and it partly remains
for further study, which statistical indicators should be involved in the fitting
procedure. However, the proposed approach gives more flexibility to include
information from different time scales enabling a simple and useful fit for long
traces of traffic and packet loss processes. Several Markov approaches have been
proposed providing more states and parameters, which improve the accuracy
of the fit to the observed process characteristics on account of more complex
adaptation schemes.
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